Κ-deformations of D = 4 Weyl and Conformal Symmetries *

نویسندگان

  • Jerzy Lukierski
  • Vladymir Lyakhovsky
  • Marek Mozrzymas
چکیده

We provide first explicite examples of quantum deformations of D = 4 conformal algebra with mass-like deformation parameters, in applications to quantum gravity effects related with Planck mass. It is shown that one of the classical r-matrices defined on the Borel subalgebra of sl(4) with o(4, 2) reality conditions describes the light-cone κ-deformation of D = 4 Poincaré algebra. We embed this deformation into the three-parameter family of generalized κ-deformations, with r-matrices depending additionally on the dilatation generator. Using the extended Jordanian twists framework we describe these deformations in the form of noncocommutative Hopf algebra. We describe also another four-parameter class of generalized κ-deformations, which is obtained by continuous deformation of distinguished κ-deformation of D = 4 Weyl algebra, called here the standard κ-deformation of Weyl algebra. PACS numbers:11.30.Cp, 95.85.Gn, 98.70.Vc. ∗Supported by KBN grant No 5PO3B05620 (JL and MM) and by the Russian Foundation for Basic Research under grant No 00-01-00500 (VL).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 02 03 18 2 v 2 2 7 Ju n 20 03 κ - deformations of D = 4 Weyl and conformal symmetries ∗

We provide first explicite examples of quantum deformations of D = 4 conformal algebra with mass-like deformation parameters, in applications to quantum gravity effects related with Planck mass. It is shown that one of the classical r-matrices defined on the Borel subalgebra of sl(4) with o(4, 2) reality conditions describes the light-cone κ-deformation of D = 4 Poincaré algebra. We embed this ...

متن کامل

ar X iv : h ep - t h / 03 01 05 6 v 1 9 J an 2 00 3 κ - Deformations of D = 3 Conformal Versus Deformations of D = 4 AdS Symmetries

We describe the classical o(3, 2) r-matrices as generating the quantum deformations of either D=3 conformal algebra with mass-like deformation parameters or D=4 AdS algebra with dimensionless deformation parameters. We describe the quantization of classical o(3, 2) r-matrices via Drinfeld twist method which locates the deformation in the coalgebra sector. Further we obtain the quantum o(3, 2) a...

متن کامل

ar X iv : h ep - t h / 03 01 05 6 v 2 2 3 Ja n 20 03 κ - Deformations of D = 3 Conformal Versus Deformations of D = 4 AdS Symmetries

We describe the classical o(3, 2) r-matrices as generating the quantum deformations of either D=3 conformal algebra with mass-like deformation parameters or D=4 AdS algebra with dimensionless deformation parameters. We describe the quantization of classical o(3, 2) r-matrices via Drinfeld twist method which locates the deformation in the coalgebra sector. Further we obtain the quantum o(3, 2) a...

متن کامل

From noncommutative space-time to quantum relativistic symmetries with fundamental mass parameter

We consider the simplest class of Lie-algebraic deformations of spacetime algebra, with the selection of κ-deformations as providing quantum deformation of relativistic framework. We recall that the κ-deformation along any direction in Minkowski space can be obtained. Some problems of the formalism of κ-deformations will be considered. We shall comment on the conformal extension of light-like κ...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008